Conjunctive representation of position, direction, and velocity in entorhinal cortex.

نویسندگان

  • Francesca Sargolini
  • Marianne Fyhn
  • Torkel Hafting
  • Bruce L McNaughton
  • Menno P Witter
  • May-Britt Moser
  • Edvard I Moser
چکیده

Grid cells in the medial entorhinal cortex (MEC) are part of an environment-independent spatial coordinate system. To determine how information about location, direction, and distance is integrated in the grid-cell network, we recorded from each principal cell layer of MEC in rats that explored two-dimensional environments. Whereas layer II was predominated by grid cells, grid cells colocalized with head-direction cells and conjunctive grid x head-direction cells in the deeper layers. All cell types were modulated by running speed. The conjunction of positional, directional, and translational information in a single MEC cell type may enable grid coordinates to be updated during self-motion-based navigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Preferred Directions of Conjunctive Grid X Head Direction Cells in the Medial Entorhinal Cortex Are Periodically Organized.

The discovery of speed-modulated grid, head direction, and conjunctive grid x head direction cells in the medial entorhinal cortex has led to the hypothesis that path integration, the updating of one's spatial representation based on movement, may be carried out within this region. This hypothesis has been formalized by many computational models, including a class known as attractor network mod...

متن کامل

Continuous Attractor Network Model for Conjunctive Position-by-Velocity Tuning of Grid Cells

The spatial responses of many of the cells recorded in layer II of rodent medial entorhinal cortex (MEC) show a triangular grid pattern, which appears to provide an accurate population code for animal spatial position. In layer III, V and VI of the rat MEC, grid cells are also selective to head-direction and are modulated by the speed of the animal. Several putative mechanisms of grid-like maps...

متن کامل

A model for the differentiation between grid and conjunctive units in medial entorhinal cortex.

The multiple layers of medial entorhinal cortex (mEC) contain cells that differ in selectivity, connectivity, and cellular properties. Grid cells in layer II and in the deeper layers express triangular grid patterns in the environment. The firing rate of the conjunctive cells found in layer III and below, on the other hand, show grid-by-head direction tuning. In this study, we model the differe...

متن کامل

The effect of Gallic acid on prenatal entorhinal cortex and CA1/CA3 hippocampal areas in trimethyltin intoxication rat

Background: Prenatal intoxication with trimethyletin (TMT) induces widespread neuronal death in the central nervous system by inducing oxidative stress. The aim of this study was to evaluate the antioxidant effect of gallic acid (GA) on the neuronal density of the entorhinal cortex, hippocampal pyramidal cells and oxidative stress parameters in the fetal forebrain following TMT intoxication. ...

متن کامل

The effect of intraperitoneal injection of N6-cyclohexyladenosine, a selective adenosine A1 receptor agonist, on entorhinal cortex-kindled seizures in rats

The effects of intraperitoneal injection of N6-cyclohexyladenosine (CHA, a selective adenosine A1 receptor agonist) and 8-cyclopenthyle-I-3-dimethylexanthine (CPT, a selective adenosine A1 receptor antagonist) on entorhinal cortex-kindled seizures were investigated. Fully entorhinal cortex-kindled rats received normal saline (control), CHA (0.06, 0.12 and 0.25 mg/kg) or CPT (0.06 and 0.12 mg/kg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 312 5774  شماره 

صفحات  -

تاریخ انتشار 2006